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Abstract. Mechanisms for the relaxation of muon spin relaxation signals in paramagnets are 
analysed in terms of spin fluctuations in aHeisenberg magne t with a ferromagnetic exchange 
interaclion. Explicit predictions provided for EuO are based on the assumption that the 
implanted muon occupies an interstitial site of high symmetry. Because the average dipolar 
field at the muon site is zero. and the material i s  ferromagnetic. the dipolar mechanism of 
relaxation i s  not enhanced by critical spin fluctuations. In consequence. the hyperfine 
mechanism dominatesrelaxation in thecritical region.even though the ratioofthe hyperfine 
and dipolar coupling constants might be small. Calculations of relaxation rates for both 
mechanisms, made on the basis of coupled-mode theory. are provided for critical and 
paramagnetic stales. 

1. Introduction 

Numerous research groups have studied the relaxation rate of muon spin relaxation 
( ~ S R )  signals in paramagnets; see, for example, reviews by Cox (1987). Hohenemser 
etai(1989) and Karlsson (1990). The magnetic materials used include ferromagnetically 
and antiferromagnetically coupled salts and metals. The consensus from the reported 
work is that the relaxation rate A increases as the critical temperature T, is approached 
from above. In some cases, a significant enhancement of A is observed well above T,. 
While some general statements have been made about the.dependence of h on critical 
exponents. no detailed calculations of A in the critical and paramagnetic regions have 
appeared. As a first remedial step, we report the findings of an investigation of the 
temperature dependence of h that is based on the Heisenberg model of a ferro- 
magnetically coupled (simple) magnet. The present work complements our discussion 
of relaxation in an ordered ferromagnet (Lovesey et al1992, hereafter referred to as I). 

Our choice of the Heisenberg model means that we can draw on a wealth of previous 
theoretical work on critical and paramagnetic spin fluctuations. In particular, we use 
results obtained using dynamic scaling arguments, and the renormalization-group and 
coupled-mode theory. The Heisenberg model can be used with confidence to describe 
properties of magnetic salts. We illustrate the implications of our theoretical results by 
evaluating them for parameters appropriate to EuO. which has been extensively studied 
by many other experimental techniques. An outcome of our work is a clear statement 
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of how A is related to quantities observed with some of these techniques, e.g. neutron 
spectroscopy. Although we draw on material given in 1, to avoid unnecessary repetition 
of data and formula, we strive to make the present paper more or less self-contained. 

Attention is focused on two possible magnetic mechanisms for relaxation of the ~ S R  
signal. One arises from fluctuations in the dipolar field created by the atomic magnetic 
moments. If the implanted muon in EuO resides at a high-symmetry interstitial site, 
the average dipolar field it experiences is zero. The second mechanism considered is 
generated by the hyperfine interaction. While the ratio of the hyperfine and dipolar 
coupling constants is likely to be small in a magnetic salt, we argue that critical spin 
fluctuations enhance only the hypefine mechanism, which therefore dominates in the 
critical region. 

Formulae for the contributions to A made by these two mechanisms are reviewed in 
section 2. These formulae are obtained from expressions derived in I using standard 
first-order perturbation theory. The relaxation rate is a bulk response function, in the 
sense that the specific heat, susceptibility, thermal conductivity, etc., are bulk response 
functions. In contrast, the response function observed in neutron scattering can be 
viewedasa differential response function that doescontain direct evidence of elementary 
excitations (spin waves), critical fluctuations and collective modes. The formulae for A 
insection2makeexplicit thisfundamentaldifference, forAisproportional toan integral 
over all wavevectors of the neutron scattering response function. A consequence of this 
relationship is that ?+might not reflect strong features in the neutron scattering response 
because the integration negates their influence. Set against this, ~ S R  permits measure- 
ments to be made that are not currently possible by other techniques. e.g. the measure- 
ment of spin fluctuations in zero magnetic field. 

In section 3 the formulae for 1., from section 2, are expressed in terms of quantities 
that are natural vehicles for theoretical discussions. There is also a brief review of 
coupled-mode theory of spin fluctuations, which is the basis of calculations described in 
sections 4 and 5. Critical fluctuations are discussed in section 4; results of previous work 
enable us to provide a concrete prediction for the enhancement of E.. The temperature 
dependence of A in the paramagnetic region is the subject of section 5 ,  and specific 
results for EuO are gathered in section 6. Our findings are summarized in section 7. 

2. Relaxation mechanisms 

An implanted muon interacts with the atomic moments in a magnetic material largely 
through dipolar and hyperfine mechanisms. Both these mechanisms are thoroughly 
discussed in I. Here we record the expressions for 1. appropriate to the paramagnetic 
state in which the atomic spins are disordered. Hence, the results of immediate interest 
are obtained from results in I for the special case when we average over the orientation 
of the muon spin relative to the atomic spins. 

Following the discussion of EuO given in I ,  the muon is taken to be equidistant from 
four Eu ions, located at sites defined by lattice vectors {l). For this arrangement, 
illustrated in figure 1, the average dipolar field at the muon is zero. I n  the calculation of 
A ,  using standard first-order perturbation theory, this value of the average dipolar field 
is manifest in the identity 

S W Lovesey et a1 

y239 = 0 (2.1) 
I 

for all components of the second-order spherical harmonic. From results in I we obtain 
the following contribution to A due to fluctuations in the dipolar field, 
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Figure 1. The interstitial site assumed for the 
implanted p' in EuO is illustrated relative to the four 
nearest-neighbour Eu ions. Units are such that the 
length of one side of the cube in the figure is a/2,  
whereais the Fcccell dimension. 

A d  = 3r 1 dt(S'(I. t )S*(r ,  0) - P ( I  f 6, t)Sz(l, 0)). (2.2) 
-.T 

Here, 

r = %(2g,pBpN/fid3)Z = 0.055 x io6 (wZ (2.3) 
in which d = aV'3/4 is the distance between the muon site and a Eu ion, expressed in 
terms of the cell length a = 5.14 A. The factor 3 in (2.2) arises because (Sesa) is inde- 
pendent of the Cartesian label (Y = x ,  y ,  z in the paramagnetic state, and 6 = 
(a/2)(1,1,0) connects nearest-neighbour Eu ions. The fact that A is related to the 
difference of two spin correlation functions is a direct consequence of (2.1). 

Turning now to the hyperfine mechanism, we find 

A h  = (l/hz) Z A , A , / '  dt(S'(I, t)Sz(l',O)) 
1.1' -.L 

= (4A2/h2) /= dt(Sz(I, t )Sz ( l ,  0) + 3Sz(I + 6 ,  t )SZ( l ,  0)) (2.4) 
-I 

where the second equality is obtained when the coupling constant A is the same for all 
sites. The expectation is that 4(A/h)* Q 3r. 

It is very helpful to express the spin correlation functions in (2.2) and (2.4) in terms 
of the Van Hove response function, 

(2.5) 

In this expression, the lattice sums run over all N magnetic sites in the sample. We now 
find 

(2.6) Ad = (6nhT/N) 2 S(k, 0)[1 - cos(k. S)]  
x 

and 

dh = (&r,/N) I: ~ ( k ,  o)[i + 3 COS(&. a)] 

r, = s(A/~)*. (2.8) 

(2.7) 
X 

with 

We recall that the relaxation rates are related to S(k, U )  evaluated at o = 0; the muon 
Larmor frequency is very small compared with characteristic electronic frequencies, so 
it may be taken to be zero to a very good approximation. 
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Theexpressions(2.6)and (2.7)are the basisofsubsequent discussions. Asmentioned 
in the introduction, they suggest that A is quite properly regarded as a bulk response 
function akin to more familiar bulk response functions such as the specific heat. sus- 
ceptibility, etc. By the same token, S(k ,  w )  is a differential response function that does 
contain direct signatures of spin waves, collective modes and critical fluctuations. The 
formula for the nuclear magnetic resonance (NMR) linewidth (1/T2) is essentially the 
same as (2.7) apart from the geometric factor (Heller 1967). 

3. Response functions 

The Van Hove response function S(k. U). introduced in the previous section, is related 
to the spectrum of neutrons scattered by a paramagnet. Knowledge of its properties has 
been obtainedfrom avarietyof calculations usingone of several techniques. To facilitate 
contact with this body of theoretical work, it is necessary to record the relation between 
S(k, w)and the Kuborelaxation function, denoted here by F(k, t) (background material 
is covered by Lovesey (1986)). The latter satisfies a generalized Langevin equation 

a,F(k ,  r) = - I' dr' K ( k ,  I - t')F(k, t ')  
0 

(3.1) 

in which K ( k ,  t )  is usually called the memory function, and its time-Laplace transform 
the collisional self-energy. Equation (3.1) is the common starting point for a coupled- 
mode theory, basedon (3.8), which givesresultsfor F(k, f )  that have been demonstrated 
to be good in the critical and paramagnetic regions (Cuccoli er all989, 1990). For the 
critical region the results are consistent with dynamic scaling arguments and calculations 
based on the method of the renormalization group. Static correlations are consistent 
with the spherical model. 

With our set of definitions, 

F(k, f = 0) = X(k) (3.2) 

is the isothermal susceptibility. IfE(k, s) denotes the Laplace transform of K(k,  f), the 
relaxation rates of interest are 

(3.3) 

and 

,th = (rUz-/N) E [ X W / R ( ~ ,  0 ) ~ i  + 3  COS(^. 6)i (3.4) 
k 

in which Tis the absolute temperature ( k ,  = 1). 
The initial value of K ( k ,  r) is the second frequency moment of S(k, w ) .  For a Heisen- 

berg magnet with a nearest-neighbour exchange of strength J between spins of magni- 
tude S, 

K(k .  I = 0) = w;(k) = (4rJ/~(k))(l - y , ) ( S z ( 0 ) S ( 6 ) } .  (3.5) 

Here, the static correlation function involves nearest-neighbour spins separated by a 
distance 6, r is the number of nearest neighbours, and the geometric factor 
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yt = ( l / r )xcos(k.S) .  (3.6) 
6 

Notethatin(3.3)and(3.4)wecanreplacecos(k. S)byyk.ForanFcclattice,appropriate 
for EuO, r = 12, a2 = aZ/12 and 

3y,=cos(;k,)cos(;k,j +cos(;k,jcos(;k,) +cos(;k,)cos(;k,). (3.7) 

The memory function K(k, t )  is not known exactly. Probably the best description avail- 
able today is obtained from coupled-mode theory, in  which 

K(k  0 = (QdW ( Y r t q  - Y,)’F(k + 4. t)F(q. 1). (3.8) 
9 

Taken together with (3.1) this prescription for K(k, t) provides an integro-differential 
equation for F(k, t ) ,  and thus results for K(k, t ) .  The function Qt in (3.8) is 

Qx = (ZrJ)’T/X(k). (3.9) 
It is relatively easy to demonstrate that (3.8) for K(k, r) ik consistent with the spherical 
model result forX(k). One finds 

(3.10) 2rJx(k) = U/p - YJ‘ 
in which the temperature factor ,U is related to the critical temperature T, through 

TIT, = l(l)/I(P) (3.11) 

with the standard definition of Watson’s extended integral 

(3.12) 

For an FCC lattice, ](I) = 1.3446. . . (Joyce 1972). 

theory, 

&(k) = [2(2~J)’ /3~~fi~lS(S + 1)(1 - ~ d ( 1  - U Y X ) [ ~  - P/I(,u)I. 
Finally, we record the relatipn between T, and J ,  namely 

Returningto w,(k) defined in ( 3 4 ,  theexplicit value, consistent with mode-coupling 

(3.13) 

+(2rJ)S(S + 1) = l ( l ) T < .  (3.14) 

Here, as elsewhere in this section, the relation is valid for a nearest-neighbour exchange 
interaction. This model is not entirely satisfactory for EuO, Measurements by Passellet 
al(1976) show that a second-nearest-neighbour coupling i s  significant in this material. 
We employ a single exchange interaction because of thesimplifications it brings to the 
calculations. However, it should be noted that coupled-mode theory can be prepared 
for an arbitrary range of the exchange interaction (Cuccoli er al1989). 

4. Critical fluctuations 

To deduce the properties of the relaxation rates Ad and Ah from (3.3) and (3.4) it is 
evident that we need expressions for X(k) and K(k, 0) in the critical region, where the 
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inverse correlation length K satisfies UK Q I and K = 0 at T,. For X(k)  the appropriate 
expression is derived from (3.10), 

S W Louesey et a1 

2u21x(k) = (K* + k2)-’ (4.1) 
where we neglect the critical exponent q because it is very small for the Heisenberg 
model in three dimensions. 

In deriving an expression for c ( k ,  0) we begin by noting that, according to the 
coupled-mode theory, K(k, r )  is a generalized homogeneous function at T = T, of the 
form 

K(k,  t )  = cK(5-1 /5k ,  c ’ f l r ) .  (4.2) 
The choice = g2k5, where E is a non-universal energy constant, is consistent with 
coupled-mode theory, dynamic scaling and calculations based on the renormalization 
group (Hohenberg 1981, Balucani el a/ 1987). From these results it follows that @, 0) 
is proportional to 4k5!2. The proportionality constant is obtained from an explicit cal- 
culation using one of the two types of theory. Here we follow Lovesey and Williams 
(1986). who obtain from the theory reviewed in section 3, 

c(k.  0) = 5k5’* X 4.510. (4.3) 
Armed with (4.1) and (4.3) we proceed to a description of the relaxation rates in the 
critical region. 

From (3.3) it follows by inspection that Ad isnot divergent at the critical temperature. 
The potential divergence of the integral in (3.3) is killed by the geometric factor. 

The same fate does not befall Ah; it is straightforward to demonstrate that Ah diverges 
like as T-. T,. On performing the k integration in (3.4). 

hh = (0.40A’T,u,/ha215)(1/K)’/*. (4.4) 
For EuO, 5 = 1.31 meV LI = 5.14 A, U,, = u3/4 and T, = 69.5 K is consistent in the 
spherical model with I = 0.74 K. For these parameters the factor in (4.4) has the value 

36.85(A2/h) (meV ,&3/2)-‘. 

The power-law divergence predicted by (4.4) is most usefully written in the form 
(l/K)Z+Z-d-v 

where d is the spatial dimensionality, and z = 5/2 and q are the usual critical exponents, 
taken together with the definition 

K m  (T/Tc  - 1)”. 
Recall that the exponent for the static susceptibility y satisfies y = 4 2  - q ) .  A first- 
order renormalization-group analysis yields z = 1 + d/2 on both sides of the critical 
temperature. 

The results for Ad and Ah demonstrate that critical fluctuations enhance the hyperfine 
mechanism for muon relaxation, but not the dipolar mechanism. So sufficiently close to 
T, we predict Ad G Ah. The absence of an enhancement of Ad stems from the spatial 
property ofthe dipolar interaction for aspecial highsymmetryenvironmen t (the average 
dipolar field is zero at the position occupied by the implanted muon), and the union 
of this property with a ferromagnetic susceptibility that peaks at k = 0. 

The estimate (4.4) does not take account of the influence of dipolar interactions 
between the atomic moments (Huber 1971, Frey and Schwabl 1988), which have been 
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shown to have a significant effect on F(k, t) at very small wavevectors (Mezei 1986). A 
dipolar-induced cross-over to a critical exponent z = 2.0 occurs, in the theory, at a k- 
value that is about an order of magnitude smaller than the value for cross-over in 
static properties and time dependence. and confirmation remains a challenge to the 
experimentalist. Note that for A,, to display an enhancement the value of z must exceed 
d = 3 .  . .  

5. Paramagnetic fluctuations: theory 

Our discussion of the relaxation ratesin the paramagnetic phase is based on the coupled- 
modetheoryresuIt(3,8).Hence, thesusceptibilityistaken tobe (3.10),i.e. thespherical 
model susceptibility (Joyce 1972). 

The memory function (3.8) has been obtained for EuO; and other materials, at 
selected wavevectors by numerically solving the coupled equations (3.1) and (3.8) 
(Cuccoli et a1 1989, 1990). To proceed along the same lines with the calculation of the 
relaxation rates (3.3) and (3.4) demands a knowledge of K ( k ,  t )  at every point used in 
the k integration routine. This clearly amounts to a very large computation. which 
is probably not justified at present. Instead, we use the result (3.8) to generate an 
approximate analytic expression for K ( k ,  I) that provides a tolerable result for K(k, 0); 
the method adopted is closely related to ideasdescribed by Lovesey and Meserve (1973). 

The function z ( k ,  0 )  is the integral of K(k, r )  over all t. Hence, deep in the para- 
magnetic region it is not very sensitive to fine details of K ( k ,  t). Moreover, when T > T,, 
F(q, t)isarelativelybenignfunctionofitsarguments,soK(k, I ) ,  whichisa joint function 
of F(k + q, I) and F(q, 1 ) .  is also quite benign. In view of this, we will for the purpose of 
calculating K(k, 0) represent K(k, t )  by a simple gaussian function of t ,  

R(k, 0) = 1’; dt wa(k) exp[ -&t26’(k)]  = (04/6)d(z/2). (5.1) 
0 

Here, wa is the second moment of S(k ,  w) and it arises in (5.1) because we require the 
approximate K(k, t) to satisfy (3.5). The function 6(k) is derived from (3.8) by noting 
that it is proportional to the second time derivative of K(k ,  t )  evaluated at t = 0. In this 
way we find 

62(k) = 8JTL(k) (5.2) 

( 2 / ~  - y k ) ~ ( k )  = N~(Yktq-yll)*(l-y*t,)(l/p-yq)-’. (5.3) 

with 

1 

‘I 

The reasoning that leads us to propose (5.1) is vindicated by the fact that L(k) ,  obtained 
by numerical integration, is a mild function of k and T .  In fact, the following analytic 
representation for an FCC lattice, obtained by making an expansion in p, is good over 
the range of variables of immediate interest, 

L ( k )  = A1 + (~/48)(4 - 9 ~ k )  + ( ~ ~ / 9 6 ) ( 1 9  - 9 ~ k ) l .  (5.4) 
Usingtheexpressionin (5.2) thevaluesobtainedfor 6(k)  differ from theexact numerical 
values by a few per cent for p < 0.8, and at p = 0.9 (T/T, = 1.30) the error is 9%. 
This level of accuracy is deemed to be quite consistent with the general tenor of our 
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calculation, and fully justified by the simplification it brings to the calculation of the 
integrals involved in  the expressions (3.3) and (3.4). 

In order to assess the Gaussian approximation for the memory function, we compare 
it to the exact result, obtained bya fullnumericalsolutionofthecoupled-mode equation 
(Cuccoli eta1 1989). Figure 2 shows results for EuO, T =  1.5 T, and k = n(1, 1, 1)/2a. 
The difference in the initial values is attributed to the use in the couple-mode calculation 
ofnearestand next-nearest exchangeinteractions. At muchlongertimes(>34.0reduced 
time steps) the exact memory function changes sign, but the magnitude does not exceed 
-10-40f the initial value. The long tail in the exact memory function is expected, and it  
becomes a stronger feature as T+ T,. Although the Gaussian approximation to the 
memory function is but tolerable, its integral, which occurs in the relaxation rate, differs 
from theexactresult byamere3.5%. Thisfindingaddsweight toourconfidenceinusing 
the Gaussian approximation to estimate the paramagnetic relaxation rate. 

In closing this section we note that a2(k)  is formally the second cumulant of S(k, a), 
i.e. the mean-square width of the neutron scattering response. Hence, (5.2) and (5.3) 
give the coupled-mode theory approximation to the mean-square width of S(k ,  w ) .  This 
quantity is known exactly in the extreme limit T = =, and the result is (FCC) 

S W Louesey et a1 

3U2S(S + l)[f - Iyx - 1/16S(S + I)]. 
The corresponding limiting value of 6’(k) is 

S2(k )  = 64JzS(S + 1). 
It is not surprising that 6(k )  contains less information than the exact expression, since it 
is an approximate result. The close agreement in the numerical values of the two 
expressions (for S = i) is added support for our confidence in (5.4) as a tolerable 
estimate. 

6. Paramagnetic fluctuations: numerical results 

Here we report the findings for the relaxation rates Ad and A h  obtained from the theory 
describedin theprevioussection. To thisendit isuseful togatherthevariouscomponents 
that appear in the expressions we have evaluated. 

Let us write 
id = ( ~ ~ T / ~ ’ J ) ( T , / ~ J ) ’ ” J , ( ~ )  

where the temperature dependence is solely contained in 

For EuO the prefactor in  (6.1) has the value 0.063 (,us)-’. Turning attention to the 
hyperfine contribution to the relaxation rate, the analogue of (6.1) is 

A h  = (hr,/2r:J)(T,/nJ)”2Jh(P) (6.3) 
with 

(6.4) 
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Figure 2. The exact and Gaussian approximation for 
the memory function are displayed as a function of 
the reduced time step t = 6.5 It where 1 is units of 
picoseconds (EuO, T =  1.5 T, and k =  n(1, 1 .  I)/ 
Za).Theareaundertheexactandapproximatecuwes 
is 0.650 and 0.628 meV. respectively. 

Figure 3. The functions .Id and Jh that determine the 
temperaturedcpendenceofthediplarandhyperfine 
contributions 10 the relaxation rate deep in the para- 
magneticphase.equations(6.1)-(6.4),aredispiayd 
as a function of the reduced temperature TITc The 
results are appropriate for a ferromagnetically 
coupled (nearest-neighbour) FCC material. 

The coupling constant To is related to the hyperfine constant A ,  as in (2.8). In (6.2) and 
(6.4) the function L(k) is given for an FCC lattice by (5.4). the Watson integral is defined 
in (3.12), and y,foundfrom (3.7). 

Taken at their face value in the critical region these expressions yield Ad and Ah 
proportional to l / ~  and ( l / ~ ) ~ ,  respectively. Failure to obtain the correct behaviour, 
provided in section 4, is hardly surprising, but it serves to remind us that the expressions 
we are considering apply to the paramagnetic region ( T >  Tc). The failure for T - t  T, 
hassomething in common with the breakdown oftheso-called conventional (orclassical) 
theory of critical slowing-down of spin fluctuations. For this theory is based on the 
behaviour of frequency moments, and the erroneous assumption that the relevant 
transport coefficient islargely independent of temperature. At T, it predicts a decay rate 
proportional to k4,  whereas it is firmly established experimentally that the dependence 
is Piz. The latter result is in accord with theory; indeed the decay rate is z ( k ,  0) given 
in (4.3). 

The high-temperature limits for Ad and Ah are readily obtained with the aid of the 
following expansion for I @ ) ,  

together with (TA m) 

Thus, 

I ( P )  = P[1 + W / r )  + ‘ ’ . I  

p --f 2rJS(S + 1)/3T. 

A ,  + (hr/qs(s + i)/z+* (6.5) 

( A h / A d ) *  0.396(rU/r) (6.6) 

and 

in which thefactorsinvolved areappropriate toan ~cclattice. Theresults(6.5) and (6.6) 
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resemble Moriya’s estimate of the nuclear magnetic relaxation rate (Moriya 1956), 
although it must be stressed that our theory is much more sophisticated and reliable. 

Values of Jd and Jh are provided in figure 3 for temperatures up to 3T,, which for an 
FCC lattice corresponds t o p  = 0.44. Beyond this value Jd and Jh continue to decrease, 
and reach minimum values at p - 0.25 before achieving their limiting values of 13.92 
and 33.10, respectively. Our paramagnetic theory begins to be suspect when 1 / ~  and 
( l / ~ ) )  behaviour for Ad and Ah, respectively, becomes dominant, at which point the 
results in section 4 are used with complete confidence. 

S W Lovesey et ai 

7. Conclusions 

Relaxations of ~ S R  signals by the dipolar and hyperfine mechanisms are radically 
different. The hyperfine relaxation ratedivergesonapproaching thecritical temperature 
where its temperature dependence is (T/T, - 1)-2”’2. In contrast to this, the dipolar 
relaxation rate does not benefit from critical fluctuations. This behaviour reflects, to 
some extent, the model geometry used for the implanted muon, which is probably 
appropriate for EuO, where it experiences no net average dipolar field. Similar effects 
are unlikely in an antiferromagnetically coupled material because the chemical and 
magnetic structures do not coincide (Lovesey 1992). The temperature dependence of Ad 
in MnF2, for example, must be similar to the NMR linewidth data reported by Heller 
(1967):cf. De Renzietal(l984). 

Predictions regarding critical effects are surely based, since i n  our formulation we 
have direct recourse to the theory of dynamiccritical phenomena. For the paramagnetic 
phase our theory is to some extent inchoate. An obvious development is to invest 
computer time and utilize the full memory function derived from coupled-mode theory, 
illustrated in figure 2, instead of the convenient parametrization we have exploited. 
However, the evidence documented in section 5 strongly supports the view that there 
will be a minimal difference between the two calculations and no new features will 
emerge. In view of this, the huge cost of computer time is not justified at the present 
stage in the development of theory and experiment. 

We find that the hyperfine relaxation rate increases by about a factor 4 as the 
temperature is reduced by a half from TIT, = 3.0. On reaching T/T, = 1.5 a very rapid 
growth sets in as the precursor to the divergence encountered as T+ T,. Set against this 
behaviour, the temperature dependence of the dipolar relaxation rate is feeble. 
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